Uses of Interface
microsim.statistics.DoubleSource
Packages that use DoubleSource
Package
Description
-
Uses of DoubleSource in microsim.statistics
Fields in microsim.statistics declared as DoubleSourceMethods in microsim.statistics with parameters of type DoubleSourceModifier and TypeMethodDescriptionvoidTimeSeries.addSeries(@NonNull DoubleSource source, @NonNull Enum<?> valueID) Adds a new series to the existing one.Constructors in microsim.statistics with parameters of type DoubleSourceModifierConstructorDescriptionDouble(@NonNull DoubleSource source) Creates a statistic probe on a collection ofDoubleSourceobjects.Double(@NonNull DoubleSource source, @NonNull Enum<?> valueID) Creates a statistic probe on a collection ofDoubleSourceobjects. -
Uses of DoubleSource in microsim.statistics.functions
Classes in microsim.statistics.functions that implement DoubleSourceModifier and TypeClassDescriptionclassThis class computes the number of values in an array taken from a data source.classThis class computes the maximum value in an array of source values.static classMaxFunction operating on double source values.static classMaxFunction operating on integer source values.static classMaxFunction operating on long source values.classA MixFunction object is to collect data over time, computing some statistics on the fly, without storing the data in memory.static classAn implementation of the Memoryless Series class, which manages double type data sources.static classAn implementation of the Memoryless Series class, which manages integer type data sources.static classAn implementation of the Memoryless Series class, which manages long type data sources.classThis class computes the average value of an array of values taken from a data source.classThis class computes the average and variance value of an array of values taken from a data source.classThis class computes the minimum value in an array of source values.static classMinFunction operating on double source values.static classMinFunction operating on integer source values.static classMinFunction operating on long source values.classA MixFunction object is to collect data over time, computing some statistics on the fly, without storing the data in memory.static classAn implementation of the Memoryless Series class, which manages double type data sources.static classAn implementation of the Memoryless Series class, which manages integer type data sources.static classAn implementation of the Memoryless Series class, which manages long type data sources.classThis class computes the average of the last given number of values in an array taken from a data source.classThis class computes the average of the last values collected from a data source.classA MixFunction object is to collect data over time, computing some statistics on the fly, without storing the data in memory.static classAn implementation of the Memoryless Series class, which manages double type data sources.static classAn implementation of the Memoryless Series class, which manages integer type data sources.static classAn implementation of the Memoryless Series class, which manages long type data sources.classThis function calculates percentiles (p1,p5,p10-p90,p95,p99) for a given cross-section of data.classThis class computes the sum of an array of source values.static classSumFunction operating on double source values.static classSumFunction operating on integer source values.static classSumFunction operating on long source values.Fields in microsim.statistics.functions declared as DoubleSourceModifier and TypeFieldDescriptionprotected DoubleSourceMovingAverageTraceFunction.dblSourceprotected DoubleSourceMaxTraceFunction.Double.targetprotected DoubleSourceMinTraceFunction.Double.targetprotected DoubleSourceMultiTraceFunction.Double.targetConstructors in microsim.statistics.functions with parameters of type DoubleSourceModifierConstructorDescriptionDouble(@NonNull DoubleSource source, @NonNull Enum<?> valueID) Creates a basic statistic probe on aDoubleSourceobject.Double(@NonNull DoubleSource source, @NonNull Enum<?> valueID) Creates a basic statistic probe on aDoubleSourceobject.Double(@NonNull DoubleSource source, @NonNull Enum<?> valueID) Creates a basic statistic probe on aDoubleSourceobject.MovingAverageTraceFunction(@NonNull DoubleSource source, @NonNull Enum<?> valueID, int windowSize) Creates a basic statistic probe on aDoubleSourceobject. -
Uses of DoubleSource in microsim.statistics.reflectors
Classes in microsim.statistics.reflectors that implement DoubleSourceModifier and TypeClassDescriptionclassEmploys Java reflection to call objects' methods which return double values. -
Uses of DoubleSource in microsim.statistics.regression
Methods in microsim.statistics.regression with parameters of type DoubleSourceModifier and TypeMethodDescriptionLinearRegression.computeScore(@NonNull MultiKeyCoefficientMap coeffMultiMap, @NonNull DoubleSource iDblSrc, @NonNull Class<T> enumTypeDouble, @NonNull ObjectSource iObjSrc, @NonNull Class<U> enumTypeObject) Requires the implementation of the ObjectSource to ascertain whether any additional conditioning regression keys are used (e.g.static <T extends Enum<T>>
doubleLinearRegression.computeScore(@NonNull MultiKeyCoefficientMap coeffMultiMap, @NonNull DoubleSource iDblSrc, Class<T> enumType) Uses reflection to obtain information from the iDblSrc object, so it is possibly slow.static <T extends Enum<T>>
doubleLinearRegression.computeScore(@NonNull MultiKeyCoefficientMap coeffMultiMap, @NonNull DoubleSource iDblSrc, Class<T> enumType, boolean singleKeyCoefficients) Use this method when the underlying agent does not have any additional conditioning regression keys (such as the gender or civil status) to determine the appropriate regression co-efficients, i.e.<T extends Enum<T>>
booleanLogitRegression.event(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumType) LogitRegression.event(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumTypeDbl, @NonNull ObjectSource iObjSrc, @NonNull Class<U> enumTypeObj) <T extends Enum<T>>
booleanProbitRegression.event(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumType) ProbitRegression.event(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumTypeDbl, @NonNull ObjectSource iObjSrc, @NonNull Class<U> enumTypeObj) MultiLogitRegression.eventType(DoubleSource iDblSrc, Class<E> Regressors, Class<T> enumType) MultiProbitRegression.eventType(DoubleSource iDblSrc, Class<E> Regressors, Class<T> enumType) <E extends Enum<E>>
doubleMultiLogitRegression.getLogitTransformOfScore(T event, @NonNull DoubleSource iDblSrc, @NonNull Class<E> Regressors) <T extends Enum<T>>
doubleLogitRegression.getProbability(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumType) LogitRegression.getProbability(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumTypeDbl, @NonNull ObjectSource iObjSrc, @NonNull Class<U> enumTypeObj) <T extends Enum<T>>
doubleProbitRegression.getProbability(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumType) ProbitRegression.getProbability(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumTypeDbl, @NonNull ObjectSource iObjSrc, @NonNull Class<U> enumTypeObj) <E extends Enum<E>>
doubleMultiProbitRegression.getProbitTransformOfScore(T event, DoubleSource iDblSrc, @NonNull Class<E> Regressors) <T extends Enum<T>>
doubleLinearRegression.getScore(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumType) LinearRegression.getScore(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumTypeDouble, @NonNull ObjectSource iObjSrc, @NonNull Class<U> enumTypeObject) Requires the implementation of the ObjectSource to ascertain whether any additional conditioning regression keys are used (e.g.<T extends Enum<T>>
doubleLinReg.getScore(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumType) LinReg.getScore(@NonNull DoubleSource iDblSrc, @NonNull Class<T> enumTypeDouble, @NonNull ObjectSource iObjSrc, @NonNull Class<U> enumTypeObject) -
Uses of DoubleSource in microsim.statistics.weighted.functions
Classes in microsim.statistics.weighted.functions that implement DoubleSourceModifier and TypeClassDescriptionclassThis class computes the (weighted) average (mean) value of an array of values taken from a data source, weighted by corresponding weights: weighted mean = sum (values * weights) / sum (weights) Note that the array of weights must have the same length as the array of values, otherwise an exception will be thrown.classThis class computes the sum of an array of source values, with each element of the array multiplied by the weight of the source (the source must implement theWeightinterface).static classSumFunction operating on weighted double source values.static classSumFunction operating on weighted integer source values.static classSumFunction operating on weighted long source values.